Further info

Authors(preliminary tests) R. Pierdicca, M. Paolanti, F. Matrone, M. Martini, C. Morbidoni, E. S. Malinverni, E. Frontoni, A. Lingua
(with ArCH dataset) F. Matrone, E. Grilli, M. Martini, M. Paolanti, R. Pierdicca, F. Remondino
InstitutionUniversità Politecnica delle Marche, Politecnico di Torino, FBK
ApproachDeep learning, neural network
NameDGCNN-Mod
Short descriptionThe K-nn input features have been modified with the addition of the r, g, b and normals
Title of the paper(preliminary tests) Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage
(with ArCH dataset) Comparing Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation
Reference linkhttps://www.mdpi.com/2072-4292/12/6/1005
Code
Additional features
GPU/HardwareNvidia RTX 2080 TI 11 GB, 128 GB RAM, processor Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz
Linked projectsPartially funded by the CIVITAS (ChaIn for excellence of reflectiVe societies to exploit dIgital culTural heritAge and museumS) project
and by external funding from the project “Artificial Intelligence for Cultural Heritage” (AI4CH) joint Italy-Israel lab which was funded by
the Italian Ministry of Foreign Affairs and International Cooperation (MAECI)
Comments
Date of publication in this websiteSeptember 2020

Metrics

ArchColumnMoldingFloorDoor-WindowWallStairVaultRoof
Precision0.2890.7630.4140.8250.7790.7870.8010.7920.950
Recall0.0800.1910.3600.8740.1780.9270.4980.9510.936
F1-Score0.1260.3070.3850.8490.2890.8510.6160.8640.942
IoU0.0670.1800.2380.7370.1690.7410.4430.7610.892

Confusion matrix

ArchColumnMoldingFloorDoor-WindowWallStairVaultRoof
Arch248332409644111721241621524102739
Column401760505012492041304100
Molding991761279193259435215821301534719
Floor10293112531170928834997295525635058
Door-Window441466977531079671140
Wall53429110868791246535331501475659381205
Stair891105933099733132019412295018420
Vault30889954757273278126443502925531354
Roof4127650214363615987874125413587998219